

MediPines Publication Summary: Ainslie AGM100[®] Validation Study

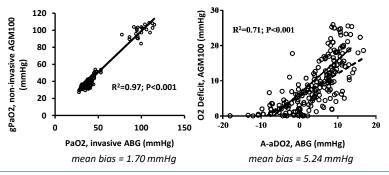
Title: Validation of a Non-invasive Assessment of Pulmonary Gas Exchange During Exercise in Hypoxia

Published: April 2020 Edition of CHEST

Authors: Connor A. Howe, David B. MacLeod, Liisa Wainman, Samuel J. Oliver, Philip N. Ainslie

Participating Universities: University of British Columbia (Canada), Duke University (United States), Bangor University (United Kingdom)

Background: Pulmonary gas exchange efficiency, determined by the alveolar-to-arterial PO₂ difference (A-aDO₂), progressively worsens during exercise at sea-level; this response is further elevated during exercise in hypoxia. Traditionally, pulmonary gas exchange efficiency is assessed through measurements of ventilation and end-tidal gases paired with direct arterial blood gas (ABG) sampling. Since these measures have a number of caveats, particularly invasive blood sampling, the development of new approaches for the non-invasive assessment of pulmonary gas exchange is needed.


Research Question: Is a non-invasive method of assessing pulmonary gas exchange (MediPines AGM100[®]) valid during rest and exercise in acute hypoxia?

Study Design and Methods: 224 data points were obtained from twenty-five healthy participants who completed a staged maximal exercise test on a cycle ergometer in a hypoxic chamber ($FIO_2=0.11$). Simultaneous ABGs via a radial arterial catheter and non-invasive gas-exchange measurements (AGM100) were obtained in two-minute intervals. Non-invasive gas exchange, termed the O_2 deficit, was calculated from the difference between the end-tidal and the calculated PaO_2 (via pulse oximetry and corrected for the Bohr effect by using the end-tidal PCO_2). Non-invasive O_2 deficit was compared to the traditional alveolar to arterial oxygen difference (A-aDO₂) using the traditional Riley analysis.

Results: Under <u>combined</u> conditions of normoxic rest, hypoxic rest and hypoxic exercise, the results revealed <u>strong correlations</u> between the calculated gPaO₂ (MediPines AGM100) and directly measured PaO₂ (arterial blood gas).

> R²=0.97 (n = 224)

At hypoxic rest and exercise: strong relationships between MediPines AGM100 (gPaO₂) and ABG PaO₂ and O₂ deficit with A-aDO₂ remained.

Conclusion Summary: This study found that pulmonary gas exchange efficiency measured using a non-invasive gas exchange monitor provided a valid and reliable measure against directly measured arterial blood gasses at rest and during hypoxic exercise. Further, the non-invasive

oxygen deficit was strongly correlated with $A-aDO_2$ values obtained from the classic invasive approach. These results provide promising evidence to support the use of non-invasive gas exchange assessments which may be applicable to both laboratory and clinical patient assessments.

Clinical Study https://doi.org/10.1016/j.chest.2020.04.017